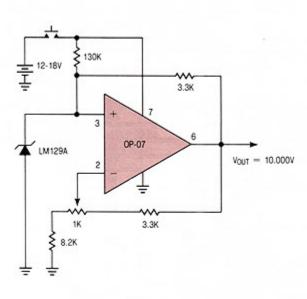


OP-07

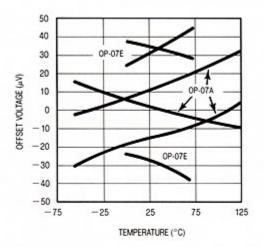
Precision Operational Amplifier

FEATURES


- Guaranteed 25µV max. Offset Voltage
- Guaranteed 0.6µV/°C max. Offset Voltage **Drift with Temperature**
- Excellent 1.0µV/Month max. Long Term Stability
- Guaranteed 0.6µV_{p-p} max. Noise
 Guaranteed 2.0nA max. Input Bias Current

APPLICATIONS

- Thermocouple Amplifiers
- Strain Gauge Amplifiers
- Low Level Signal Processing
- Medical Instrumentation


DESCRIPTION

The OP-07 offers excellent performance in applications requiring low offset voltage, low drift with time and temperature and very low noise. Linear's OP-07 is interchangeable with many of the precision op-amp device types. The OP-07 also offers a wide input voltage range, high common mode rejection and low input bias current. These features result in optimum performance for small signal level and low frequency applications. Use of advanced design, processing and testing techniques make Linear's OP-07 a superior choice over similar products. A buffered reference application is shown below. For single op amp applications requiring higher performance, see the LT1001 and for matched dual precision applications see the LT1002.

Precision Buffered Single Supply Reference

Offset Voltage Drift With Temperature Of Representative Units

The OP-07 contributes less than 5% of the total drift with temperature, noise and long term drift of the reference application.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage ± 22V
Differential Input Voltage ± 30V
Input Voltage Equal to Supply Voltage
Output Short Circuit Duration Indefinite
Operating Temperature Range
0P-07/0P-07A55°C to 125°C
OP-07E/OP-07C 0°C to 70°C
Storage Temperature Range
All Devices
Lead Temperature (Soldering, 10 sec.) 300°C

PACKAGE/ORDER INFORMATION

TOP VIEW OFFSET ADJUST	ORDER PART NO.	OFFSET VOLTAGE (MAX)
-IN 2 - CASE) METAL CAN H PACKAGE	0P-07AH 0P-07H 0P-07EH 0P-07CH	25μV 75μV 75μV 150μV
TOP VIEW VOS TRIM 1 -IN 2 +IN 3 HERMETIC DIP J8 PACKAGE PLASTIC DIP N8 PACKAGE	OP-07AJ8 OP-07J8 OP-07EJ8 OP-07CJ8 OP-07EN8 OP-07CN8	25μV 75μV 75μV 150μV 75μV 150μV

ELECTRICAL CHARACTERISTICS $V_8 = \pm 15V$, $T_A = 25^{\circ}$ C, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	OP-07A TYP	MAX	MIN	0P-07 TYP	MAX	UNITS
Vos	Input Offset Voltage	(Note 1)		10	25		30	75	μV
ΔV _{0S} ΔTime	Long Term Input Offset Voltage Stability	(Notes 2 and 3)		0.2	1.0		0.2	1.0	μV/Month
los	Input Offset Current			0.3	2.0		0.4	2.8	nA
l ₈	Input Bias Current			±0.7	±2.0	-	± 1.0	±3.0	nA
en	Input Noise Voltage	0.1Hz to 10Hz (Note 2)		0.35	0.6		0.35	0.6	μV _{p-p}
	Input Noise Voltage Density			10.3 10.0 9.6	18.0 13.0 11.0		10.3 10.0 9.6	18.0 13.0 11.0	nV/√Hz
i,	Input Noise Current	0.1Hz to 10Hz (Note 2)		14	30		14	30	pAp-p
	Input Noise Current Density	$\begin{array}{l} f_{o} = \mbox{ 10Hz} \\ f_{o} = \mbox{ 10Hz} \\ f_{o} = \mbox{ 100Hz} \end{array} \mbox{ (Note 2)} \\ f_{o} = \mbox{ 1000Hz} \end{array}$		0.32 0.14 0.12	0.80 0.23 0.17		0.32 0.14 0.12	0.80 0.23 0.17	pA/√Hz
Rin	Input Resistance Differential Mode	(Note 4)	30	80		20	60		MΩ
	Input Resistance Common Mode			200			200		GΩ
	Input Voltage Range		± 13.5	± 14.0		± 13.5	± 14.0		V
CMRR	Common Mode Rejection Ratio	$V_{CM} = \pm 13V$	110	126		110	126		dB
PSRR	Power Supply Rejection Ratio	$V_S = \pm 3V$ to $\pm 18V$	100	108		100	108		dB
A _{VOL}	Large Signal Voltage Gain	$\begin{array}{l} {\sf R}_L \geq 2 k \Omega, {\sf V}_0 = \pm 10 {\sf V} \\ {\sf R}_L \geq 500 \Omega, {\sf V}_0 = \pm 0.5 {\sf V} \\ {\sf V}_S = \pm 3 {\sf V} ({\sf Note} 4) \end{array}$	300 150	500 400		200 150	500 400		V/mV
Vout	Maximum Output Voltage Swing	$\begin{array}{l} R_L \geq 10 \mathrm{k}\Omega \\ R_L \geq 2 \mathrm{k}\Omega \\ R_L \geq 1 \mathrm{k}\Omega \end{array}$	± 12.5 ± 12.0 ± 10.5	± 13.0 ± 12.8 ± 12.0		± 12.5 ± 12.0 ± 10.5	± 13.0 ± 12.8 ± 12.0		v
SR	Slew Rate	$R_L \ge 2k\Omega$ (Note 4)	0.1	0.25		0.1	0.25	19	V/µS
GBW	Closed Loop Bandwidth	$A_{VCL} = +1$ (Note 4)	0.4	0.6		0.4	0.6		MHz
Zo	Open Loop Output Impedance	$V_0 = 0, I_0 = 0, f = 10Hz$		60			60		Ω
Z _o P _d	Power Dissipation	$\begin{array}{l} V_S = \ \pm \ 15V \\ V_S = \ \pm \ 3V \end{array}$		75 4	120 6		75 4	120 6	mW
	Offset Adjustment Range	Null Pot = 20kΩ		±4			±4		mV

See Notes on page 4.

ELECTRICAL CHARACTERISTICS $V_s = \pm 15V$, $-55^{\circ}C \le T_A \le 125^{\circ}C$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	OP-07A TYP	MAX	MIN	OP-07 TYP	MAX	UNITS
Vos	Input Offset Voltage	(Note 1)	•		25	60		60	200	μV
∆V _{QS} ∆Temp	Average Input Offset Voltage Drift Without External Trim With External Trim	Null Pot = 20kΩ (Note 2)	•		0.2 0.2	0.6 0.6		0.3 0.3	1.3 1.3	μV/°C
los	Input Offset Current		•		0.8	4.0		1.2	5.6	nA
∆l _{0S} ∆Temp	Average Input Offset Current Drift	(Note 2)	•	-	5	25		8	50	pA/°C
IB	Input Bias Current		•		± 1.0	±4.0		±2.0	±6.0	nA
∆l ₈ ∆Temp	Average Input Bias Current Drift	(Note 2)	•		8	25		13	50	pA/°C
	Input Voltage Range		•	± 13.0	± 13.5		± 13.0	± 13.5		v
CMRR	Common Mode Rejection Ratio	$V_{CM} = \pm 13V$	•	106	123		106	123		dB
PSRR	Power Supply Rejection Ratio	$V_S = \pm 3V$ to $\pm 18V$	•	94	106		94	106	_	dB
Avol	Large Signal Voltage Gain	$R_L \ge 2k\Omega$, $V_o = \pm 10V$	•	200	400		150	400		V/mV
VOUT	Output Voltage Swing	$R_L \ge 2k\Omega$	•	± 12.0	± 12.6		± 12.0	± 12.6		v

ELECTRICAL CHARACTERISTICS $V_{s} = \pm 15V$, $T_{A} = 25^{\circ}$ C, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	OP-07E TYP	MAX	MIN	OP-07C TYP	MAX	UNITS
Vos	Input Offset Voltage	(Note 1)		30	75		60	150	μV
ΔV _{0S} ΔTime	Long Term Input Offset Voltage Stability	(Notes 2 and 3)		0.3	1.5		0.4	2.0	μV/Month
los	Input Offset Current			0.5	3.8		0.8	6.0	nA
I ₈	Input Bias Current			± 1.2	±4.0		± 1.8	±7.0	nA
en	Input Noise Voltage	0.1Hz to 10Hz (Note 2)		0.35	0.6	lane and	0.35	0.65	μV _{P-9}
	Input Noise Voltage Density	$\begin{array}{l} f_{o} = \ 10 \text{Hz} \\ f_{o} = \ 100 \text{Hz} \\ f_{o} = \ 100 \text{Hz} \end{array} (\text{Note 2}) \\ f_{o} = \ 1000 \text{Hz} \end{array}$		10.3 10.0 9.6	18.0 13.0 11.0		10.5 10.2 9.8	20.0 13.5 11.5	nV/√Hz
l _n	Input Noise Current	0.1Hz to 10Hz (Note 2)		14	30	la series	15	35	pA _{p-p}
	Input Noise Current Density	$\begin{array}{l} f_{o} = \mbox{ 10Hz} \\ f_{o} = \mbox{ 100Hz} \\ f_{o} = \mbox{ 1000Hz} \end{array} \mbox{ (Note 2)}$		0.32 0.14 0.12	0.80 0.23 0.17		0.32 0.15 0.13	0.90 0.27 0.18	pA/√Hz
Rin	Input Resistance Differential Mode	(Note 4)	15	50		8	33		MΩ
	Input Resistance Common Mode			160			120		GΩ
	Input Voltage Range		± 13.5	± 14.0		± 13.0	± 14.0		V
CMRR	Common Mode Rejection Ratio	$V_{CM} = \pm 13V$	106	123		100	120		dB
PSRR	Power Supply Rejection Ratio	$V_S = \pm 3V$ to $\pm 18V$	94	106		90	104		dB
Avol	Large Signal Voltage Gain	$\begin{array}{l} R_L \geq 2k\Omega, V_0 = \pm 10V \\ R_L \geq 500\Omega, V_0 = \pm 0.5V \\ V_S = \pm 3V (\text{Note 4}) \end{array}$	200 150	500 400		120 100	400 400		V/mV
Vo	Maximum Output Voltage Swing	$\begin{array}{l} R_L \geq 10 \mathrm{k}\Omega \\ R_L \geq 2 \mathrm{k}\Omega \\ R_L \geq 1 \mathrm{k}\Omega \end{array}$	± 12.5 ± 12.0 ± 10.5	± 13.0 ± 12.8 ± 12.0		± 12.5 ± 11.5	± 13.0 ± 12.8 ± 12.0		v
SR	Slewing Rate	$R_L \ge 2k\Omega$ (Note 2)	0.1	0.25		0.1	0.25	le	V/µS
GBW	Closed Loop Bandwidth	AvcL = +1 (Note 2)	0.4	0.6		0.4	0.6		MHz
Zo	Open Loop Output Impedance	$V_0 = 0, I_0 = 0, f = 10Hz$		60			60		Ω
Pd	Power Dissipation			75 4	120 6		80 4	150 8	mW mW
	Offset Adjustment Range	Null Pot = 20kΩ		±4			±4		m۷

See Notes on page 4.

ELECTRICAL CHARACTERISTICS $V_8 = \pm 15V$, 0°C $\ll T_A \ll 70$ °C, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	OP-07E TYP	MAX	MIN	OP-07C TYP	MAX	UNITS
Vos	Input Offset Voltage				45	130		85	250	μV
ΔV _{QS} ΔTemp	Average Input Offset Voltage Drift Without External Trim With External Trim	Null Pot = $20k\Omega$ (Note 2)	•		0.3 0.3	1.3 1.3		0.5 0.4	1.8 1.6	μV/°C
los	Input Offset Current		•		0.9	5.3		1.6	8.0	nA
∆l _{0S} ∆Temp	Average Input Offset Current Drift	(Note 2)	•		8	35		12	50	pA/°C
IB	Input Bias Current		•		± 1.5	±5.5		±2.2	±9.0	nA
∆l ₈ ∆Temp	Average Input Bias Current Drift	(Note 2)	•		13	35		18	50	pA/°C
	Input Voltage Range		•	± 13.0	± 13.5		± 13.0	± 13.5		v
CMRR	Common Mode Rejection Ratio	$V_{CM} = \pm 13V$	•	103	123		97	120		dB
PSRR	Power Supply Rejection Ratio	$V_S = \pm 3V$ to $\pm 18V$	•	90	104		86	100		dB
Avol	Large Signal Voltage Gain	$R_L \ge 2k\Omega$, $V_o = \pm 10V$	•	180	450		100	400		V/mV
Vout	Output Voltage Swing	$R_L \ge 2k\Omega$	•	± 12.0	± 12.6		± 11.0	± 12.6		٧

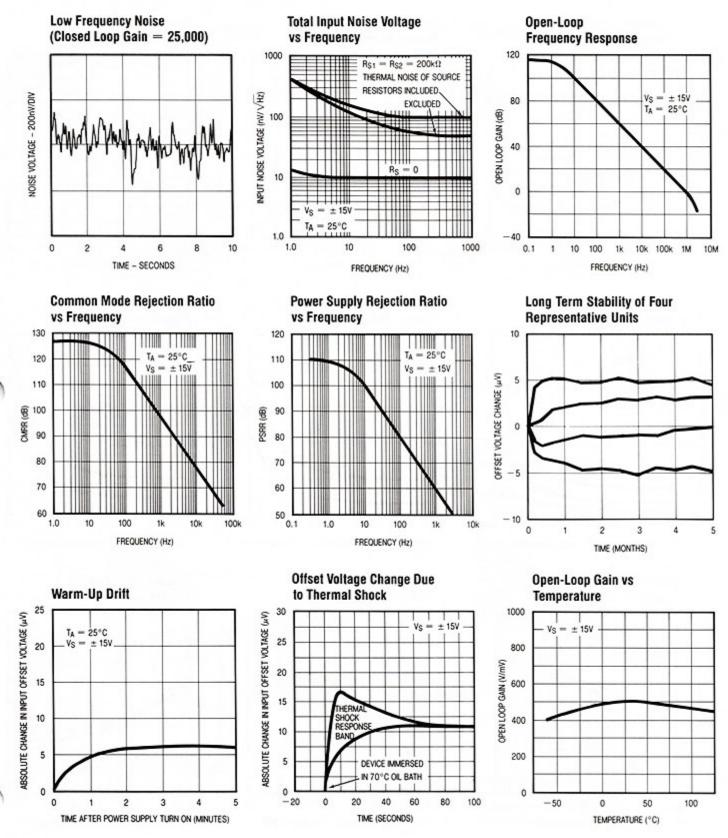
The • denotes the specifications which apply over full operating temperature range.

For MIL-STD components, please refer to LTC 883C data sheet for test listing and parameters.

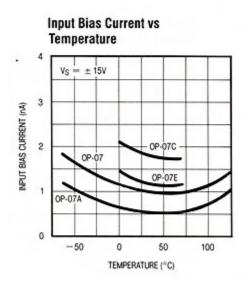
Note 1: Offset voltage for the OP-07A is measured 60 seconds after power is applied. All other grades are measured with high speed test equipment, approximately 1 second after power is applied.

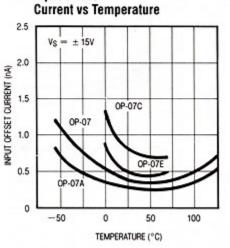
Note 2: This parameter is tested on a sample basis only.

Note 3: Long term Input Offset Voltage Stability refers to the averaged trend line of V_{0S} versus Time over extended periods after the first 30 days of operation. Excluding the initial hour of operation, changes in V_{0S} during the first 30 operating days are typically $2.5\mu V$. Note 4: This parameter is guaranteed by design.

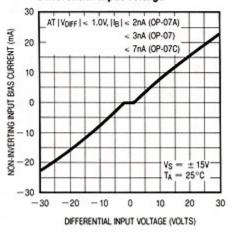

Note 5: The OP-07D is available by special request.

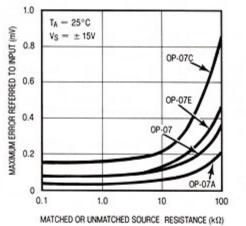
TYPICAL PERFORMANCE CHARACTERISTICS


Downloaded from

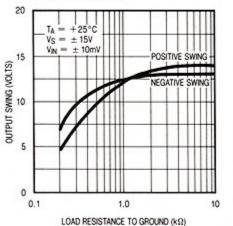

Arrow.com

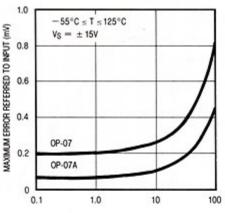
5


TYPICAL PERFORMANCE CHARACTERISTICS

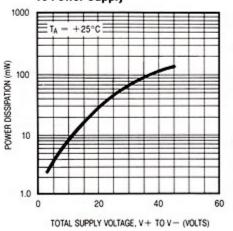


Input Offset

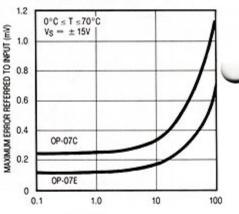

Input Bias Current vs Differential Input Voltage


Maximum Error vs Source Resistance

Output Voltage vs Load Resistance

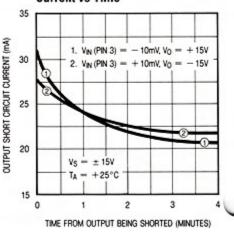


Maximum Error vs Source Resistance



MATCHED OR UNMATCHED SOURCE RESISTANCE (kΩ)

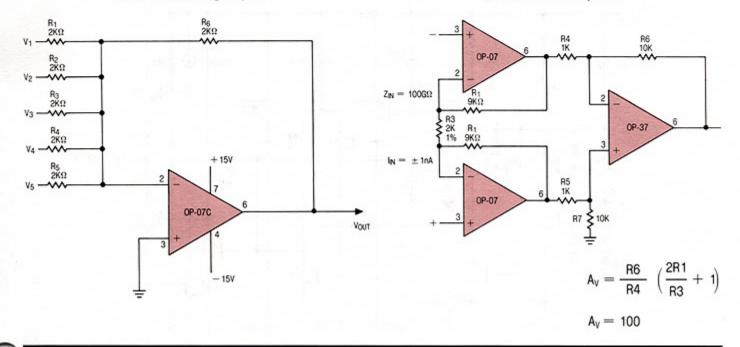
Power Consumption vs Power Supply



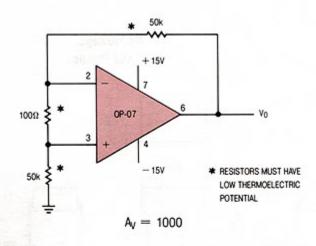
Maximum Error vs Source Resistance

MATCHED OR UNMATCHED SOURCE RESISTANCE (kΩ)

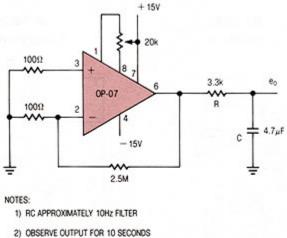
Output Short-Circuit Current vs Time



TYPICAL APPLICATIONS


Precision Summing Amplifier

Instrumentation Amplifier

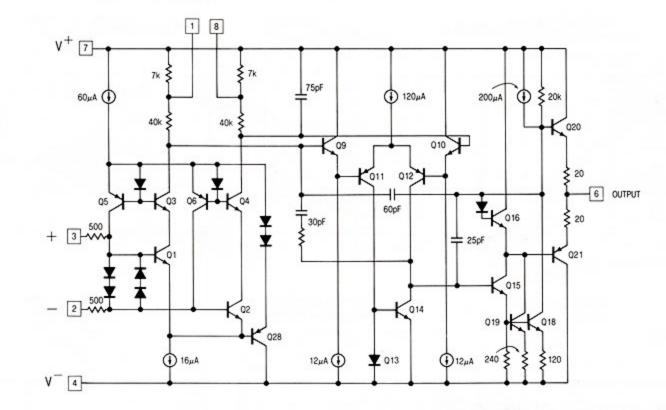

TEST CIRCUIT DIAGRAMS

Offset Voltage Test Circuit †

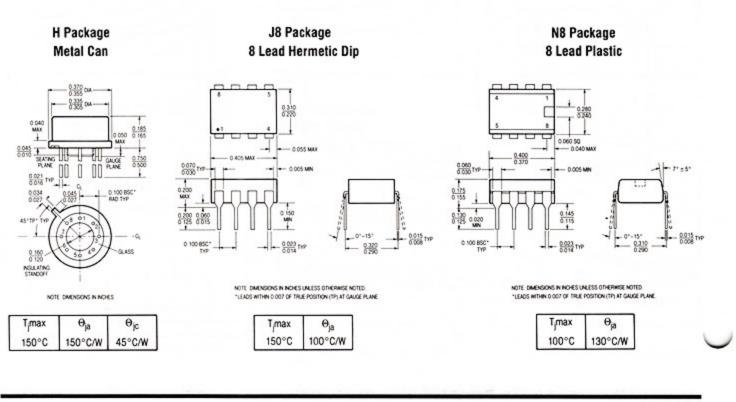
[†] This circuit is also used as the burn-in configuration with supply voltages changed to ±20 Volts.

Offset Nulling and Low Frequency Noise Test Circuit

Ay = 25000


Application Tip:

When the OP-07 is used as a replacement in 725, 108/108A, 308/308A applications, removal of external compensation is optional. For conventionally nulled 741 type applications, external trimming should be removed. Care should taken to avoid thermocouple voltages caused by temperature variations between the input terminals or dissimilar metals.



Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein ot infringe on existing patent rights.

SCHEMATIC DIAGRAM

PACKAGE DESCRIPTION

